

CENTRAL COAST WATER AUTHORITY POLONIO PASS WATER TREATMENT PLANT WATER QUALITY TABLE

COVERING THE REPORTING PERIOD OF JANUARY-DECEMBER 2023

Please see last page for key to abbreviations.

						TREATED	SOURCE	
		State	PHG	State	Range		STATE	
Parameter	Units	MCL	(MCLG)	DLR	Average	CCWA	WATER	Major Sources in Drinking Water

PRIMARY STANDARDS--Mandatory Health-Related Standards

CLARITY (a)

Combined Filter Effluent	NTU	TT=<1 NTU every 4 hours	Range	0.04 - 0.12	NA	Soil runoff
Turbidity (a)	NIU	TT=95% of samples <0.3 NTU	%	100%	NA	

INORGANIC CHEMICALS

Aluminum	mg/L 1 (b) 0.6	0.05	Range	ND - ND	0.055 - 1.3	Erosion of natural deposits; residual from some		
Aluminum	mg/∟	1 (0)	0.0	0.05	Average	ND	0.324	surface water treatment processes

DISTRIBUTION SYSTEM MONITORING

Total Chlorine Residual	mg/L	MRDL = 4.0	MRDLG =	NA	Range	1.05 - 4.06	NA	Drinking water disinfectant added for treatment
Total Onionne Residual	iiig/L	WINDE - 4.0	4.0	IN/A	Average	2.87	NA	Drinking water disinfectant added for iteatment
Total Coliform					Range	0	NA	
Bacteria		(c)	(0)		Average	0	NA	Naturally present in the environment
Daciena					Highest	0%	NA	
					Range	0	NA	
E.coli (c)		0	(0)		Average	0	NA	Human and animal fecal waste
					Highest	0%	NA	
Tatal Tribalana dhana a					Range	24 - 77	NA	
Total Trihalomethanes (d)	ug/L	80	NA	(0.5)	Average	54	NA	By-product of drinking water chlorination
(4)					Highest LRAA	60.7	NA	
					Range	14 - 41	NA	
Haloacetic Acids (d)	ug/L	60	NA	(1) (e)	Average	26	NA	By-product of drinking water chlorination
					Highest LRAA	28.0	NA	

SECONDARY STANDARDS--Aesthetic Standards

	1				Range	13 - 105	9 - 100	Runoff/leaching from natural deposits; seawater
Chloride	mg/L	500 (j)	NA	(1)	Average	48	45	influence
				(1)	Range	ND	15	
Color	ACU	15 (j)	NA	(3)	Average	ND	15	 Naturally occuring organic materials
Corrosivity	SU	non-	NA	(0.1)	Range	11.2	10.5	
(Aggresivity Index) (i)	30	corrosive	INA	(0.1)	Average	11.2	10.5	
Iron, Total	mg/L	0.3 (j)	NA	(0.03)	Range	ND	0.290	Leaching from natural deposits; industrial wastes
IIOII, I Olai	mg/∟	0.5 (j)	NA.	(0.03)	Average	ND	0.290	Leaching norn natural deposits, industrial wastes
Magnesium, Total	mg/L	NA	NA	(0.1)	Range	5.75	6.24	Runoff/leaching from natural deposits; seawater
Magnesium, rotai	mg/∟	NA INA		(0.1)	Average	5.75	6.24	influence
Manganese, Total	ug/l	50 (j)	NA	(2)	Range	ND	23	
ivialiyallese, Total	ug/L	50 ())	IN/A	(2)	Average	ND	23	
Odor Threshold	TON	3 (j)	NA	(1)	Range	ND	8	-Naturally occuring organic materials
	TON	3()	N/A	(1)	Average	ND	8	Naturally occurring organic materials
Specific Conductance	uS/cm	1600 (j)	NA	NA	Range	152 - 611	114 - 562	Substances that form ions when in water;
	uo/ciii	1000 (j)	11/1		Average	381	322	seawater influence
Sulfate	mg/L	500 (j)	NA	(0.5)	Range	42	21	Runoff/leaching from natural deposits; industrial
odilato	mg/L	000 (j)	1.17.1	(0.0)	Average	42	21	wastes
Total Dissolved	mg/L	1000 (j)	NA	(10)	Range	150	130	Runoff/leaching from natural deposits
Solids (TDS)	g/L	1000 ()	1474	(10)	Average	150	130	
Turbidity (Monthly) (a)	NTU	5 (j)	NA	(0.1)	Range	ND - 0.25	ND - 4.8	Soil runoff
rubidity (worldny) (a)		÷ ())		(0.1)	Average	0.06	1.24	

						TREATED	SOURCE				
		State	PHG	State	Range		STATE				
Parameter	Units	MCL	(MCLG)	DLR	Average	CCWA	WATER	Major Sources in Drinking Water			
ADDITIONAL PARAMETERS (Unregulated)											

			1			1 .		
ng/L	NA	NA	(1)	Range	ND - 8			An organic compound mainly produced by blue-
J			.,	Average	2.8		2.1	green algae (cyanobacteria)
ma/l	NA	NA	(2)	Range	28 - 86	3	30 - 96	Runoff/leaching from natural deposits; seawater
iiig/E	1071		()	Average	54		57	influence
meg/l	NΔ	NΔ	(0.001)	Range	2.8		2.4	
шефг	NA	114	(0.001)	Average	2.8		2.4	
ma/l	NA	NA	(2)	Range	54		61	
iiig/L	NA	INA	(2)	Average	54		61	
100 cr /l	NIA	NIA	(4)	Range	13.4		13.6	Runoff/leaching from natural deposits; seawater
mg/∟	NA	NA	(1)	Average	13.4		13.6	influence
meg/l	ΝΔ	NΔ	(0.001)	Range	2.5		2.2	
meq/L	IN/A	11/2	(0.001)	Average	2.5		2.2	
ug/l	NA	0.02	ΝΔ	Range	0.094		0.073	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis,
ug/L	NA.	0.02	ĨŰ	Average	0.094		0.073	refractory production, and textile manufacturing facilities; erosion of natural deposits
	NIA	N1.0	(4)	Range	ND - 2	1	ND - 2	An organic compound mainly produced by
ng/L	NA	NA	(1)	Average	0.3		0.4	bacterial growth in surface water
ma/l	ΝΔ	NΔ	(3)	Range	28 - 134	2	4 - 136	Leaching from natural deposits
iiig/L			(3)	Average	78		79	Leaching from hardrai deposits
CFU/mL	TT	NA	NA	Range	0 - 29		NA	HPC measures a range of bacteria that are
				Average	2			naturally present in theenvironment
NONE	NA	NA	(-14)					-
	NIA	NIA	(1 4)	Range	-0.009			
NONE	NA	NA	(-14)	Average	-0.01		-0.7	
mg/L	NA	NA	(0.1)				-	Runoff/leaching from natural deposits; seawater influence
SU	NA	NA	(0.1)	Range	7.7 - 8.9	7.	38 - 8.8	Runoff/leaching from natural deposits; seawater
			(0)	<u>v</u>				influence Runoff/leaching from natural deposits; seawater
mg/L	NA	NA	(1)					influence
mg/L	NA	NA	(1)	Range	31		22	Runoff/leaching from natural deposits; seawater influence
mg/L	TT	NA	(0.3)	Average Range	31 1 - 3.1 2.1			Various natural and man made sources
	mg/L mg/L mg/L mg/L mg/L ug/L ng/L NONE NONE NONE mg/L SU mg/L ng/L	mg/LNAmeq/LNAmg/LNAmg/LNAmg/LNAmg/LNAng/LNAng/LNAmg/LNAmg/LNAmg/LNAsuNAng/LNAng/LNAng/LNAng/LNAng/LNAmg/LNAmg/LNAmg/LNAmg/LNAmg/LNAmg/LNAmg/LNAmg/LNA	mg/LNANAmeq/LNANAmg/LNANAmg/LNANAmg/LNANAmg/LNANAmg/LNANAmg/LNANAng/LNANAng/LNANAng/LNANAmg/LNANANONENANANONENANASUNANAmg/LNANAmg/LNANAmg/LNANAmg/LNANAmg/LNANAmg/LNANA	mg/LNANA(2)meq/LNANA(0.001)mg/LNANA(2)mg/LNANA(1)meq/LNANA(0.001)mg/LNANA(0.001)mg/LNANA(0.001)mg/LNANA(0.01)mg/LNANA(1)mg/LNANA(1)mg/LNANA(1)NONENANA(-14)NONENANA(0.1)SUNANA(0.1)mg/LNANA(1)mg/LNANA(1)mg/LNANA(1)mg/LNANA(1)	MatrixAveragemg/LNANA(2)Range Averagemeq/LNANA(0.001)Range Averagemg/LNANA(0.001)Range Averagemg/LNANA(1)Range Averagemg/LNANA(1)Range Averagemg/LNANA(0.001)Range Averagemg/LNANA(0.001)Range Averagemg/LNANA(0.001)Range Averagemg/LNANA(0.01)Range Averageng/LNANA(1)Range Averagemg/LNANA(11)Range AverageNONENANA(-14)Range AverageNONENANA(0.1)Range AverageSUNANA(0.1)Range Averagemg/LNANA(1)Range Averagemg/LNANA(1)Range Averagemg/LNANA(1)Range Averagemg/LNANA(1)Range Averagemg/LNANA(1)Range Averagemg/LNANA(1)Range Averagemg/LNANA(1)Range Averagemg/LNANA(1)Range Averagemg/LNANA(1)Range AverageMg/LNANA(1)Range Average	ng/L NA NA (1) Average 2.8 mg/L NA NA (2) Range 28 - 86 meq/L NA NA (2) Range 2.8 meq/L NA NA (0.001) Range 2.8 mg/L NA NA (0.001) Range 2.8 mg/L NA NA (0.001) Range 2.8 mg/L NA NA (2) Range 54 mg/L NA NA (1) Range 54 mg/L NA NA (1) Range 13.4 meq/L NA NA (0.001) Range 2.5 mg/L NA NA (0.001) Range 0.094 ug/L NA NA (1) Range 0.094 ng/L NA NA (1) Range 0.29 ng/L NA NA (1) Range <td>ng/L NA NA (1) $Average$ 2.8 mg/L NA NA (2) Range 2.8 </td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	ng/L NA NA (1) $Average$ 2.8 mg/L NA NA (2) Range 2.8	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

						TREATED	SOURCE	
		State	PHG	State	Range		STATE	
Parameter	Units	MCL	(MCLG)	DLR	Average	CCWA	WATER	Major Sources in Drinking Water
ABBREVIATIONS								

Footnotes:

- (a) Turbidity (NTU) is a measure of the cloudiness of the water and it is a good indicator of the effectiveness of our filtration system. Monthly turbidity values are listed in the Secondary Standards section.
- (b) Aluminum has a Secondary MCL of 0.2 ppm.
- (c) Level 1 treatment technique triggers: Systems that collect ≥40 samples/month, no more than 5.0% of the monthly samples may be Total Coliform positive. Systems that collect <40 samples per month, no more than one positive sample per month may be Total Coliform positive.

Level 2 treatment technique triggers: System has an E. coli MCL violation, has a second Level 1 treatment technique trigger within a rolling 12-month period, or the system with reduced annual monitoring has a Level 1 treatment technique trigger in two consecutive years.

E. coli MCLs: The occurrence of 2 consecutive Total Coliform positive samples, one of which contains E. coli, constitutes an acute MCL violation.

- (d) Compliance based on the running quarterly annual average of distribution system samples.
- (e) Monochloroacetic Acid (MCAA) has a DLR of 2.0 ug/L while the other four Haloacetic Acids have DLR's of 1.0 ug/L.
- (f) Pour plate technique
- (g) TOCs are taken at the treatment plant's combined filter effluent.
- (h) State MCL is 45 mg/L as NO3, which equals 10 mg/L as N.
- (i) AI ³ 12.0 = Non-aggressive water AI (10.0 - 11.9) = Moderately aggressive water AI £ 10.0 = Highly aggressive water Reference: ANSI/AWWA Standard C400-93 (R98)
- (j) Secondary MCL

Abbreviations

- ACU = Apparent Color Units CCWA = Central Coast Water Authority CFU/ml = Colony Forming Units per milliliter DLR = Detection Level for purposes of Reporting MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal MRDL = Maximum Residual Disinfectant Level MRDLG = Maximum Residual Disinfectant Level Goal NA = Not Applicable ND = Non-detected above detection limit (DLR) NTU = Nephelometric Turbidity Units pCi/L = PicoCuries per liter PHG = Public Health Goal ppb = parts per billion, or micrograms per liter (μ g/L) ppm = parts per million, or milligrams per liter (mg/L) TON = Threshold Odor Number
- TT = Treatment Technique
- LRAA = Locational Running Annual Average

Instantion Instantiant						Raw Source	Raw Source Water		Water		
Annote Unit Weil Unit Same <			State or			State Wate	r Project	Polonio Pa	ss WTP		
NAME OF COLSPANSION Note Network Note Network Section Particle (i) 10 Section Particle (i) Section Parine Particon Paritele (i) Section Par	Parameter	Unite	MCL	(MCLG)	DLR	Sample	Posult	Sample	Popult	Major Sources in Drinking Water	
same Apple Partner same A		Onits	[MIXDE]		(WIXE)	Date	Result	Date	Result	Major Sources in Drinking Water	
Instantion Instantiant											
ORGANIC OFFENIOALS Regulated VOC's plus Lists 13.3 (2000 mm main second se	Gross Alpha Particle	pCi/L	15	(0)	3	5/25/2023	ND	5/25/2023	ND	Erosion of natural deposits	
ORGANIC OFFENIOALS Regulated VOC's plus Lists 13.3 (2000 mm main second se	Gross Beta Particle (g)	nCi/l	50 (a)	(0)	4	5/25/2023	ND	5/25/2023	ND	Decay of natural and man-made deposits	
Regulated VOC's puscilation Value Value <thv< td=""><td>Croco Bota i antoio (g)</td><td>polite</td><td>00 (g)</td><td>(0)</td><td>•</td><td>GIEGIEGEG</td><td></td><td>0/20/2020</td><td></td><td></td></thv<>	Croco Bota i antoio (g)	polite	00 (g)	(0)	•	GIEGIEGEG		0/20/2020			
1.1.2-TethadromethameunitNuNuNuNuNuSeparationSeparationNuSeparationNuSeparationNuSeparationNuSeparationNuSeparation	ORGANIC CHEMICALS										
1.1.Thithitroshineup,20100 <th< td=""><td>Regulated VOC's plus Li</td><td>sts 1&3 (E</td><td>EPA 524</td><td>1.2)</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Regulated VOC's plus Li	sts 1&3 (E	EPA 524	1.2)							
1.1.Thithitroshineup,20100 <th< td=""><td>4.4.4.0 To the oblight of the set</td><td></td><td>NIA</td><td>NIA</td><td>(0.5)</td><td>F 105 10000</td><td>ND</td><td>E /05 /0000</td><td>ND</td><td></td></th<>	4.4.4.0 To the oblight of the set		NIA	NIA	(0.5)	F 105 10000	ND	E /05 /0000	ND		
1.1.2.2.Tenthonowhane 1 1 0 1 0	1,1,1,2-1 etrachloroethane	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND		
1,1,2,2 1,0 0,0 5,30,00 0,00 0,00,000 0,00 0,000,000,000 0,000,000,000 0,000,000,000 0,000,000,000 0,000,000,000 0,000,000,000 0,000,000,000 0,000,000,000,000 0,000,000,000,000 0,000,000,000,000 0,000,000,000,000,000 0,000,000,000,000,000,000,000,000,000,	1,1,1-Trichloroethane	ug/L	200	1000	0.5	5/25/2023	ND	5/25/2023	ND	Discharge from metal degreasing sites and other factories; manufacture of food wrappings	
1,1,2,2 1,0 0,0 5,30,00 0,00 0,00,000 0,00 0,000,000,000 0,000,000,000 0,000,000,000 0,000,000,000 0,000,000,000 0,000,000,000 0,000,000,000 0,000,000,000,000 0,000,000,000,000 0,000,000,000,000 0,000,000,000,000,000 0,000,000,000,000,000,000,000,000,000,										Discharge from industrial and agricultural chamical factorizes activant used in production of TCE	
1.2. Tribitor 1.2. StriktorebanemgL1.24.00.00525203NN525203	1,1,2,2-Tetrachloroethane	ug/L	1	0.1	0.5	5/25/2023	ND	5/25/2023	ND		
1.7. Trikhonestane ungl S<											
In Chick IncompanyIncom	1,1,2-Trichloro-1,2,2-trifluoroethane	mg/L	1.2	4	0.01	5/25/2023	ND	5/25/2023	ND	Discharge from metal degreasing sites and other factories; dry cleaning solvent; refrigerant	
Inc.	1,1,2-Trichloroethane	ug/L	5	0.3	0.5	5/25/2023	ND	5/25/2023	ND	Discharge from industrial chemical factories	
1-10-modePane up s S		Ť									
indexindexindexindexindexindexindexindexindex1.1.Debtorgroppeneugl.NANA(0.5) 5257023 ND 5257023 NDindex1.2.3.Trichloroberzeneugl.NANA(0.5) 5257023 ND 5257023 NDindex1.2.3.Trichloroberzeneugl. $5(e)$ 0.7 5 2222023 NDindexindexindex1.2.3.Trichloroberzeneugl. $5(e)$ 0.7 5 2222023 NDindexindexindex1.2.4.Trinkloroberzeneugl. $5(e)$ 0.7 5 5257223 ND 5257023 NDindexindex1.2.4.Trinkloroberzeneugl. NA (0.5) 5257223 ND 5257023 NDindexindex1.2.4.Trinkloroberzeneugl. NA (0.5) 5257223 ND 5257023 NDindexindex1.2.4.Trinkloroberzeneugl. 0.0 0.5 5257223 ND 5257223 NDindexindex1.2.0.Ehdroroberzeneugl. 0.0 0.5 5252233 ND 5252223 NDindexindex1.2.0.Ehdroroberzeneugl. 0.0 0.5 5252233 ND 5252223 NDindexindex1.2.0.Ehdroroberzeneugl. 0.0 0.5 5252233 ND 5252223 NDindexindex1.2.0.Ehdroroberzeneugl. 0.5 0.5 <t< td=""><td>1,1-Dichloroethane</td><td>ug/L</td><td>5</td><td>3</td><td>0.5</td><td>5/25/2023</td><td>ND</td><td>5/25/2023</td><td>ND</td><td></td></t<>	1,1-Dichloroethane	ug/L	5	3	0.5	5/25/2023	ND	5/25/2023	ND		
indexindexindexindexindexindexindexindexindex1.1.Debtorgroppeneugl.NANA(0.5) 5257023 ND 5257023 NDindex1.2.3.Trichloroberzeneugl.NANA(0.5) 5257023 ND 5257023 NDindex1.2.3.Trichloroberzeneugl. $5(e)$ 0.7 5 2222023 NDindexindexindex1.2.3.Trichloroberzeneugl. $5(e)$ 0.7 5 2222023 NDindexindexindex1.2.4.Trinkloroberzeneugl. $5(e)$ 0.7 5 5257223 ND 5257023 NDindexindex1.2.4.Trinkloroberzeneugl. NA (0.5) 5257223 ND 5257023 NDindexindex1.2.4.Trinkloroberzeneugl. NA (0.5) 5257223 ND 5257023 NDindexindex1.2.4.Trinkloroberzeneugl. 0.0 0.5 5257223 ND 5257223 NDindexindex1.2.0.Ehdroroberzeneugl. 0.0 0.5 5252233 ND 5252223 NDindexindex1.2.0.Ehdroroberzeneugl. 0.0 0.5 5252233 ND 5252223 NDindexindex1.2.0.Ehdroroberzeneugl. 0.0 0.5 5252233 ND 5252223 NDindexindex1.2.0.Ehdroroberzeneugl. 0.5 0.5 <t< td=""><td>1 1-Dichloroethylene</td><td>ug/l</td><td>6</td><td>10</td><td>0.5</td><td>5/25/2023</td><td>ND</td><td>5/25/2023</td><td>ND</td><td>Discharge from industrial chemical factories</td></t<>	1 1-Dichloroethylene	ug/l	6	10	0.5	5/25/2023	ND	5/25/2023	ND	Discharge from industrial chemical factories	
L2.3-TrichlorobenzeneugLNANA(0.5)5/25/2023NDS/25/2023ND12.3-TrichlorobenzenengL5(e)0.752/22/2023ND2/22/2023NDDischarge from industrial and agricultural chemical factories: leaching from hazardous waste sites; used as cleaning and maintenance solvent, paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides12.4-TrichlorobenzeneugL550.55/25/2023ND5/25/2023NDDischarge from industrial and agricultural chemical factories:12.4-TrichlorobenzeneugLNANA(0.5)5/25/2023ND5/25/2023NDDischarge from textile-finishing factories12.4-TrinchtybenzeneugLNANA(0.5)5/25/2023ND5/25/2023NDDischarge from petroleum ofineries: underground gas tank leaks; banned nematocide that may still be present in solis due to runoff and leaching from grain and fruit crops.12.4-TrinchtybenzeneugL5010205/25/2023ND5/25/2023NDDischarge from industrial chemical factories.12.4-DichtorobenzeneugL500.55/25/2023ND5/25/2023NDDischarge from industrial chemical factories.12.4-DichtorobenzeneugL50.55/25/2023ND5/25/2023NDDischarge from industrial chemical factories.13.5-TrimethybenzeneugLNANA(0.5)5/25/2023ND5/25/2023NDDischarge from industrial chemic		ug/L	Ű	10	0.0	GIEGIEGEG	HB	0/20/2020		bionargo nom madoural onomical racioneo	
And A	1,1-Dichloropropene	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND		
And A	1 2 3-Trichlorobenzene	ua/l	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND		
1,2,3-Trichloropropane ngL 5 (n) 0.7 5 2/22/2023 ND 2/22/2023 ND use as cleaning and maintenance solvent, paint and variable remover, and cleaning and degressing agent; byproduct during the production of other compounds and pesitivides 1,2,4-Trichlorobenzene ugL ND V <td></td> <td>ug/L</td> <td>10.1</td> <td></td> <td>(0.0)</td> <td>0/20/2020</td> <td>HB</td> <td>0/20/2020</td> <td></td> <td></td>		ug/L	10.1		(0.0)	0/20/2020	HB	0/20/2020			
1.2.4-Trimethylbenzene1.2.4	1,2,3-Trichloropropane	ng/L	5 (e)	0.7	5	2/22/2023	ND	2/22/2023	ND	used as cleaning and maintenance solvent, paint and varnish remover, and cleaning and	
1.2.4-Trimethylbenzene1.2.4	1,2,4-Trichlorobenzene	ug/L	5	5	0.5	5/25/2023	ND	5/25/2023	ND	Discharge from textile-finishing factories	
And A											
Entyle biordmide ng/L ng/	1,2,4-Trimethylbenzene	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND		
IncludeIncludeIncludeIncludeIncludeIncludeIncludeIncludeInclude1,2-Dichloropethaneug/L50.50.55/25/2023ND5/25/2023NDDischarge from industrial chemical factories1,2-Dichloropethaneug/L50.50.55/25/2023ND5/25/2023NDDischarge from industrial chemical factories; primary component of some fumigants1,2-Dichloropethaneug/L70.55/25/2023ND5/25/2023NDDischarge from industrial chemical factories; primary component of some fumigants1,3-Dichlorobenzeneug/LNANA0.55/25/2023ND5/25/2023NDInclude1,3-Dichloropethaneug/LNANA0.55/25/2023ND5/25/2023NDInclude1,3-Dichloropethaneug/LNANA0.55/25/2023ND5/25/2023NDInclude1,3-Dichloropethaneug/LNANA0.55/25/2023ND5/25/2023NDInclude1,3-Dichloropethaneug/LS60.55/25/2023ND5/25/2023NDInclude1,3-Dichloropethaneug/LS60.55/25/2023ND5/25/2023NDInclude1,3-Dichloropethaneug/LS60.55/25/2023ND5/25/2023NDInclude1,4-Dichloropethaneug/LS60.55/25/2023ND5/25/2023ND <td< td=""><td>Ethylene dibromide</td><td>ng/L</td><td>50</td><td>10</td><td>20</td><td>5/25/2023</td><td>ND</td><td>5/25/2023</td><td>ND</td><td></td></td<>	Ethylene dibromide	ng/L	50	10	20	5/25/2023	ND	5/25/2023	ND		
IncludeIncludeIncludeIncludeIncludeIncludeIncludeIncludeInclude1,2-Dichloropethaneug/L50.50.55/25/2023ND5/25/2023NDDischarge from industrial chemical factories1,2-Dichloropethaneug/L50.50.55/25/2023ND5/25/2023NDDischarge from industrial chemical factories; primary component of some fumigants1,2-Dichloropethaneug/L70.55/25/2023ND5/25/2023NDDischarge from industrial chemical factories; primary component of some fumigants1,3-Dichlorobenzeneug/LNANA0.55/25/2023ND5/25/2023NDInclude1,3-Dichloropethaneug/LNANA0.55/25/2023ND5/25/2023NDInclude1,3-Dichloropethaneug/LNANA0.55/25/2023ND5/25/2023NDInclude1,3-Dichloropethaneug/LNANA0.55/25/2023ND5/25/2023NDInclude1,3-Dichloropethaneug/LS60.55/25/2023ND5/25/2023NDInclude1,3-Dichloropethaneug/LS60.55/25/2023ND5/25/2023NDInclude1,3-Dichloropethaneug/LS60.55/25/2023ND5/25/2023NDInclude1,4-Dichloropethaneug/LS60.55/25/2023ND5/25/2023ND <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>= /0 = /0 0 0 0</td><td></td><td></td></td<>								= /0 = /0 0 0 0			
Instrument Instrument <td></td> <td>ug/L</td> <td>600</td> <td>600</td> <td>0.5</td> <td>5/25/2023</td> <td>ND</td> <td>5/25/2023</td> <td>ND</td> <td>Discharge from Industrial chemical factories</td>		ug/L	600	600	0.5	5/25/2023	ND	5/25/2023	ND	Discharge from Industrial chemical factories	
Index	1,2-Dichloroethane	ng/L	500	400	0.5	5/25/2023	ND	5/25/2023	ND	Discharge from industrial chemical factories	
Index	1 2-Dichloropropage	uc/l	5	0.5	0.5	5/25/2023	ND	5/25/2023	ND	Discharge from industrial chemical factories: primary component of some fumicants	
AndAn		ug/L	5	0.0	0.5	5/25/2025		512512025			
Index	1,3,5-Trimethylbenzene	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND		
Index	1 3-Dichlorobenzene	ua/l	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND		
Index Index <th< td=""><td></td><td>~g/L</td><td></td><td></td><td>(0.0)</td><td></td><td></td><td>0,20,2020</td><td></td><td></td></th<>		~g/L			(0.0)			0,20,2020			
ug/L NA NA (0.5) 5/25/2023 ND 5/25/2023 ND	1,3-Dichloropropane	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND		
ug/L NA NA (0.5) 5/25/2023 ND 5/25/2023 ND	1.4-Dichlorobenzene	ua/L	5	6	0.5	5/25/2023	ND	5/25/2023	ND	Discharge from industrial chemical factories	
	2,2-Dichloropropane	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND		
	2-Butanone	ug/L	NA	NA	5	5/25/2023	ND	5/25/2023	ND		

					Raw Source Water		Treated	Water	
		State or			State Wate	r Project	Polonio Pa	ss WTP	
		Federal MCL	PHG (MCLG)	State DLR	Most Recent Sample		Most Recent Sample		
Parameter	Units	[MRDL]	[MRDLG]	(MRL)	Date	Result	Date	Result	Major Sources in Drinking Water
2-Chlorotoluene	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
	ug/L								
4-Methyl-2-pentanone	ug/L	NA	NA	(5)	5/25/2023	ND	5/25/2023	ND	
Benzene	ug/L	1	0.15	0.5	5/25/2023	ND	5/25/2023	ND	Discharge from plastics, dyes and nylon factories; leaching from gas storage tanks and landfills
Bromobenzene	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
Bromochloromethane	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
Bromomethane	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
Carbon tetrachloride	ng/L	500	100	500	5/25/2023	ND	5/25/2023	ND	Discharge from chemical plants and other industrial activities
Obleashearan		70	000	(0.5)		ND	E /05 /0000	ND	
Chlorobenzene	ug/L	70	200	(0.5)	5/25/2023	ND	5/25/2023	ND	
Chloroethane	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
Chloromethane	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
									Discharge from industrial chemical factories; major biodegradation by-product of TCE and PCE
cis-1,2-Dichloroethylene	ug/L	6	100	0.5	5/25/2023	ND	5/25/2023	ND	groundwater contamination
cis-1,3-Dichloropropene	ug/L	NA	NA		5/25/2023	ND	5/25/2023	ND	Runoff/leaching from nematocide used on croplands
Dibromomethane	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
Diisopropyl ether	ug/L	NA	NA	(3)	5/25/2023	ND	5/25/2023	ND	
Dichlorodifluoromethane	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
Ethylbenzene	ug/L	300	300	0.5	5/25/2023	ND	5/25/2023	ND	Discharge from petroleum refineries; industrial chemical factories
tert-Butyl ethyl ether	ug/L	NA	NA	(3)	5/25/2023	ND	5/25/2023	ND	
Hexachlorobutadiene	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
Isopropylbenzene	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
isopropyidenzene	ug/L	NA	INA	(0.5)	5/25/2025	ND	5/25/2025	ND	
m,p-Xylenes	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	Discharge from petroleum and chemical factories; fuel solvent
Dichloromethane	ug/L	5	4	0.5	5/25/2023	ND	5/25/2023	ND	Discharge from pharmaceutical and chemical factories; insecticide
Methyl tert-butyl ether (a)	ug/L	13 (b)	13	3	5/25/2023	ND	5/25/2023	ND	Leaking underground storage tanks; discharge from petroleum and chemical factories
Naphthalene	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
n-Butylbenzene	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
n-Propylbenzene	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
a Vulana		NIA	NIA		E/05/0000	ND	E/0E/0000	ND	Discharge from netroleum and chemical factories: file activity
o-Xylene	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	Discharge from petroleum and chemical factories; fuel solvent
p-Chlorotoluene	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
p-Isopropyltoluene	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	

						Source Water Treated Water		Water	
		State or			State Wate	r Project	Polonio Pa	ss WTP	
		Federal MCL	PHG (MCLG)	State DLR	Most Recent Sample		Most Recent Sample		
Parameter	Units	[MRDL]	[MRDLG]	(MRL)	Date	Result	Date	Result	Major Sources in Drinking Water
sec-Butylbenzene	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
Styrene	ug/L	100	0.5	0.5	5/25/2023	ND	5/25/2023	ND	Discharge from rubber and plastic factories; leaching from landfills
tert-Amyl methyl ether	ug/L	NA	NA	(3)	5/25/2023	ND	5/25/2023	ND	
tert-Butylbenzene	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
Tetrachloroethylene	ug/L	5	0.06	0.5	5/25/2023	ND	5/25/2023	ND	Discharge from factories, dry cleaners, and auto shops (metal degreaser)
Toluene	ug/L	150	150	0.5	5/25/2023	ND	5/25/2023	ND	Discharge from petroleum and chemical factories; underground gas tank leaks
1,3-Dichloropropene, Total	ng/L	500	200	500	5/25/2023	ND	5/25/2023	ND	Runoff/leaching from nematocide used on croplands
Total Xylenes	mg/L	1.750	1.8	0.0005	5/25/2023	ND	5/25/2023	ND	Discharge from petroleum and chemical factories; fuel solvent
trans-1,2-Dichloroethylene	ug/L	10	60	0.5	5/25/2023	ND	5/25/2023	ND	Discharge from industrial chemical factories; minor biodegradation by-product of TCE and PCE groundwater contamination
trans-1,3-Dichloropropene	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	Runoff/leaching from nematocide used on croplands
Trichloroethylene	ug/L	5	1.7	0.5	5/25/2023	ND	5/25/2023	ND	Discharge from metal degreasing sites and other factories
Trichlorofluoromethane	ug/L	150	1300	5	5/25/2023	ND	5/25/2023	ND	Discharge from industrial factories; degreasing solvent; propellant and refrigerant
Vinyl chloride	ng/L	500	50	500	5/25/2023	ND	5/25/2023	ND	Leaching from PVC piping; discharge from plastics factories; biodegradation by-product of TCE and PCE groundwater contamination
Organochlorine Pesticid	es/PCBs (EPA 50)5)						
Aldrin		NA	NA	(0.01)	5/25/2023	ND	5/25/2023	ND	
Aldrin	ug/L	INA	NA	(0.01)	5/25/2025	ND	5/25/2025	ND	
Chlordane	ng/L	100	30	100	5/25/2023	ND	5/25/2023	ND	Residue of banned insecticide
Dieldrin	ug/L	NA	NA	(0.2)	5/25/2023	ND	5/25/2023	ND	
Endrin	ug/L	2	0.3	0.1	5/25/2023	ND	5/25/2023	ND	Residue of banned insecticide and rodenticide
Heptachlor	ng/L	10	8	10	5/25/2023	ND	5/25/2023	ND	Residue of banned insecticide
Heptachlor epoxide	ng/L	10	6	10	5/25/2023	ND	5/25/2023	ND	Breakdown of heptachlor
Lindane	ng/L	200	32	200	5/25/2023	ND	5/25/2023	ND	Runoff/leaching from insecticide used on cattle, lumber, gardens
Methoxychlor	ug/L	30	0.09	10	5/25/2023	ND	5/25/2023	ND	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock
PCB 1016 Aroclor (as DCB)	ug/L	0.5	NA	(0.1)	5/25/2023	ND	5/25/2023	ND	Runoff from landfills; discharge of waste chemicals
PCB 1221 Aroclor (as DCB)	ug/L	0.5	NA	(0.1)	5/25/2023	ND	5/25/2023	ND	Runoff from landfills; discharge of waste chemicals
PCB 1232 Aroclor (as DCB)	ug/L	0.5	NA	(0.1)	5/25/2023	ND	5/25/2023	ND	Runoff from landfills; discharge of waste chemicals
PCB 1242 Aroclor (as DCB)	ug/L	0.5	NA	(0.1)	5/25/2023	ND	5/25/2023	ND	Runoff from landfills; discharge of waste chemicals
PCB 1248 Aroclor (as DCB)	ug/L	0.5	NA	(0.1)	5/25/2023	ND	5/25/2023	ND	Runoff from landfills; discharge of waste chemicals
PCB 1254 Aroclor (as DCB)	ug/L	0.5	NA	(0.1)	5/25/2023	ND	5/25/2023	ND	Runoff from landfills; discharge of waste chemicals

		1			Raw Source Water		Treated Water		
		State or			State Wate		Polonio Pa		
		Federal	PHG	State	Most Recent		Most Recent		
Parameter	Units	MCL [MRDL]	(MCLG) [MRDLG]	DLR (MRL)	Sample Date	Result	Sample Date	Result	Major Sources in Drinking Water
	Units		[MIXDEG]		Date	Result	Date	Result	
PCB 1260 Aroclor (as DCB)	ug/L	0.5	NA	(0.1)	5/25/2023	ND	5/25/2023	ND	Runoff from landfills; discharge of waste chemicals
PCB`s, Total	ng/L	500	90	500	5/25/2023	ND	5/25/2023	ND	Runoff from landfills; discharge of waste chemicals
Toxaphene	ug/L	3	0.03	1	5/25/2023	ND	5/25/2023	ND	Runoff/leaching from insecticide used on cotton and cattle
Aldicarbs (EPA 531.2)									
3-Hydroxycarbofuran	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
Aldicarb	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
				(0.5)	E 105 10000	ND	5/05/0000		
Aldicarb sulfone	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
Aldicarb sulfoxide	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
Baygon	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
	ug/2								
Carbaryl	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
Carbofuran	ug/L	18	0.7	5	5/25/2023	ND	5/25/2023	ND	Leaching of soil fumigant used on rice and alfalfa, and grape vineyards
Mathiagash		NIA	NIA	(0.5)	5/25/2023	ND	E/0E/0000	ND	
Methiocarb	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
Methomyl	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
-									Runoff/leaching from insecticide used on field crops, fruits and ornamentals, especially apples,
Oxamyl	ug/L	50	26	20	5/25/2023	ND	5/25/2023	ND	potatoes, and tomatoes
Diquat and Paraquat (EF	20 540 2)								
Diquat and Paraquat (EP	A J45.2)								
Diquat	ug/L	20	6	4	7/5/2023	ND	7/5/2023	ND	Runoff from herbicide use for terrestrial and aquatic weeds
Paraquat	ug/L	NA	NA	(2)	7/5/2023	ND	7/5/2023	ND	
				(=)	110/2020		110/2020		
EDB and DBCP (EPA 55	1.1)								
Dibromochloropropane	ug/L	NA	NA		5/25/2023	ND	5/25/2023	ND	
	ug, 2				0,20,2020		0/20/2020		
Ethylene dibromide	ng/L	50	10	20	5/25/2023	ND	5/25/2023	ND	Discharge from petroleum refineries; underground gas tank leaks; banned nematocide that may still be present in soils due to runoff and leaching from grain and fruit crops
Chlorophenoxy Herbicic	les (EPA 5	515.4)							
2,4,5-T	ug/L	NA	NA	(0.2)	5/25/2023	ND	5/25/2023	ND	
	ug/L			(0.2)					
2,4,5-TP	ug/L	50	3	1	5/25/2023	ND	5/25/2023	ND	Residue of banned herbicide
2,4-Dichlorophenoxyacetic acid	ug/L	70	20	10	5/25/2023	ND	5/25/2023	ND	Runoff from herbicide used on row crops, range land, lawns, and aquatic weeds
2,4-DB	ug/L	NA	NA	2	5/25/2023	ND	5/25/2023	ND	
3,5-Dichlorobenzoic acid	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
Acifluorfen	ug/L	NA	NA	(0.2)	5/25/2023	ND	5/25/2023	ND	
Aondonen	uy/L	11/4	11/4	(0.2)	JIZJIZUZJ		JIZJIZUZJ		

!					Raw Source Water		Treated Water		
	1	State or	!	1	State Water	-	Polonio Pa	ISS WTP] [
Parameter	Units	Federal MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR (MRL)	Most Recent Sample Date	Result	Most Recent Sample Date	Result	Major Sources in Drinking Water
Bentazon	ug/L	18	200	2	5/25/2023	ND	5/25/2023	ND	Runoff/leaching from herbicide used on beans, peppers, corn, peanuts, rice, and ornamental grasses
Dalapon	ug/L	200	790	10	5/25/2023	ND	5/25/2023	ND	Runoff from herbicide used on rights-of-way, and crops and landscape maintenance
Dicamba	ug/L	NA	NA	(0.1)	5/25/2023	ND	5/25/2023	ND	
Dichlorprop	ug/L	NA	NA	(0.5)	5/25/2023	ND	5/25/2023	ND	
Dinoseb	ug/L	7	14	2	5/25/2023	ND	5/25/2023	ND	Runoff from herbicide used on soybeans, vegetables, and fruits
Pentachlorophenol	ug/L	1	0.3	0.2	5/25/2023	ND	5/25/2023	ND	Discharge from wood preserving factories, cotton and other insecticidal/herbicidal uses
Picloram	ug/L	500	166	1	5/25/2023	ND	5/25/2023	ND	Herbicide runoff
DCPA (total Mono & Diacid Degradates)	ug/L	NA	NA	(0.1)	5/25/2023	ND	5/25/2023	ND	
Other Synthetic Organics	S								
Dioxin		30	NA		5/25/2023	ND	5/25/2023	ND	Emissions from waste incineration and other combustion; discharge from chemical factories
	pg/L								
Endothall	ug/L	100	94	45	5/25/2023	ND	5/25/2023	ND	Runoff from herbicide use for terrestrial and aquatic weeds; defoliant
Glyphosate	ug/L	700	900	25	5/25/2023	ND	5/25/2023	ND	Runoff from herbicide use
Semivolatiles (EPA 525.2	<u>·)</u>								
Benzo (a) pyrene	ng/L	200	7	100	5/25/2023	ND	5/25/2023	ND	Leaching from linings of water storage tanks and distribution mains
Di (2-Ethylhexyl) phthalate	ug/L	4	12	3	5/25/2023	ND	5/25/2023	ND	Discharge from rubber and chemical factories; inert ingredient in pesticides
Di-(2-Ethylhexyl) adipate	ug/L	400	200	5	5/25/2023	ND	5/25/2023	ND	Discharge from chemical factories
Hexachlorocyclopentadiene	ug/L	50	2	1	5/25/2023	ND	5/25/2023	ND	Discharge from chemical factories
INORGANIC CHEMICALS	S								
					5/05/0000		5/05/0000		
Antimony, Total	ug/L	6	1	6	5/25/2023	ND	5/25/2023	ND	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic, Total	ug/L	10	0.004	2	5/25/2023	ND	5/25/2023	ND	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Barium, Total	mg/L	1	2	0.1	5/25/2023	ND	5/25/2023	ND	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits
Beryllium, Total	ug/L	4	1	1	5/25/2023	ND	5/25/2023	ND	Discharge from metal refineries, coal-burning factories, and electrical, aerospace, defense industries
Cadmium, Total	ug/L	5	0.04	1	5/25/2023	ND	5/25/2023	ND	Internal corrosion of galvanized pipes; erosion of natural deposits; discharge from electroplating and industrial chemical factories, and metal refineries; runoff from waste batteries and paints
Chromium, Total	ug/L	50	(100)	10	5/25/2023	ND	5/25/2023	ND	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits
Copper (a)	mg/L	1 (c) (f)	0.3	0.05	5/25/2023	ND	5/25/2023	ND	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

State or Federal MCL [MRDL] 150 2 2 NA	ederal PHG MCL (MCLG) MRDL] [MRDLG] 150 150	100	State Water Most Recent Sample Date 5/25/2023	Result	Polonio Pa Most Recent Sample Date	ss WTP Result	Major Sources in Drinking Water
MCL [MRDL] 150 2	MCL (MCLG) MRDL] [MRDLG] 150 150	DLR (MRL) 100	Sample Date		Sample	Result	Maior Sources in Drinking Water
2			5/25/2023	ND			
2			5/25/2023				
	2 1			ND	5/25/2023	ND	Discharge from steel/metal, plastic and fertilizer factories
NA		0.1	5/25/2023	ND	5/25/2023	ND	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
NA							
	NA NA	(2)	5/25/2023	ND	5/25/2023	ND	
(c)	(c) 0.2	5	5/25/2023	ND	5/25/2023	ND	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers;
2	2 1.2	1	5/25/2023	ND	5/25/2023	ND	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and cropland
400	100 10	10	5/05/0000	ND	F/05/0000	ND	
100	100 12	10	5/25/2023	ND	5/25/2023	ND	Erosion of natural deposits; discharge from metal factories
10 (h)	10 (h) 10	0.4	5/25/2023	ND	5/25/2023	ND	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
1	1 1	0.4	5/25/2023	ND	5/25/2023	ND	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural
6 (d)	6 (d) 1	4	5/25/2023	ND	5/25/2023	ND	Perchlorate is an inorganic chemical used in solid rocket propellant, fireworks, explosives, flares,
50	50 30	5	5/25/2023	ND	5/25/2023	ND	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots (feed additive)
100 (6)	100 (6) NIA	(0.5)	E/0E/0000	NID	E/0E/0000	ND	Industrial Disabarras
100 (f)	100 (f) NA	(0.5)	5/25/2023	ND	5/25/2023	ND	Industrial Discharges
2	2 0.1	1	5/25/2023	ND	5/25/2023	ND	Leaching from ore-processing sites; discharge from electronics, glass, and drug factories
5 (f)	5 (f) NA	(0.02)	5/25/2023	ND	5/25/2023	ND	Runoff/leaching from natural deposits; industrial wastes
		1 1 6 (d) 1 50 30 100 (f) NA	10 (h) 10 0.4 1 1 0.4 6 (d) 1 4 50 30 5 100 (f) NA (0.5) 2 0.1 1	10 (h) 10 0.4 5/25/2023 1 1 0.4 5/25/2023 6 (d) 1 4 5/25/2023 50 30 5 5/25/2023 100 (f) NA (0.5) 5/25/2023 2 0.1 1 5/25/2023	10 (h) 10 0.4 5/25/2023 ND 1 1 0.4 5/25/2023 ND 6 (d) 1 4 5/25/2023 ND 50 30 5 5/25/2023 ND 100 (f) NA (0.5) 5/25/2023 ND 2 0.1 1 5/25/2023 ND	10 (h) 10 0.4 5/25/2023 ND 5/25/2023 1 1 0.4 5/25/2023 ND 5/25/2023 6 (d) 1 4 5/25/2023 ND 5/25/2023 6 (d) 1 4 5/25/2023 ND 5/25/2023 50 30 5 5/25/2023 ND 5/25/2023 100 (f) NA (0.5) 5/25/2023 ND 5/25/2023 2 0.1 1 5/25/2023 ND 5/25/2023	10 (h) 10 0.4 5/25/2023 ND 5/25/2023 ND 1 1 0.4 5/25/2023 ND 5/25/2023 ND 6 (d) 1 4 5/25/2023 ND 5/25/2023 ND 6 (d) 1 4 5/25/2023 ND 5/25/2023 ND 50 30 5 5/25/2023 ND 5/25/2023 ND 100 (f) NA (0.5) 5/25/2023 ND 5/25/2023 ND 2 0.1 1 5/25/2023 ND 5/25/2023 ND

ABBREVIATIONS AND FOOTNOTES

Abbreviations

DCPA	Dimethyl Tetrachloroterephthalate	NC	Not Collected
DLR	Detection Limits for purposes of Reporting	ND	None Detected above dectection limit (DLR)
MCL	Maximum Contaminant Level	pCi/L	picoCuries per Liter
MCLG	Maximum Contaminant Level Goal	PHG	Public Health Goal
MFL	Million Fibers per Liter	ppb	Parts per billion
MRDL	Maximum Residual Disinfectant Level	ppm	Parts per million
MRDLG	Maximum Residual Disinfectant Level Goal	ppt	Parts per trillion
MRL	Minimum Reporting Limit	ppq	Parts per quadrillion
NA	Not Applicable		

Footnotes

(a)	Copper, MTBE, and thiobencarb have both primary and secondary standards.
(b)	MTBE has a secondary MCL of 5 ppb.
(c)	Lead and copper are regulated as a Treatment Technique under the Lead and Copper Rule. It requires systems to take water samples at the consumers' tap.
	The action levels, which trigger water systems into taking treatment steps
	if exceeded in more than 10% of the tap water samples, are 1.3 ppm for copper and 15 ppb for lead.
(d)	The State primary MCL for perchlorate was set at 6 ppb effective October 18, 2007. Perchlorate reporting level is 2 ppb.
(e)	1,2,3-Trichloropropane is an unregulated contaminant with a notification level of 0.005 ppb.
(f)	Secondary MCL.
(g)	Gross beta particle activity MCL is 4 millirem/year annual dose equivalent to the total body or any internal organ. 50pCi/L is used as a screening level.
(h)	Thiobencarb has a secondary MCL of 1 ppb.